Monte Carlo simulations of polyampholyte-polyelectrolyte complexes: effect of charge sequence and strength of electrostatic interactions.

نویسندگان

  • Junhwan Jeon
  • Andrey V Dobrynin
چکیده

We present the results of Monte Carlo simulations of complexation between polyampholyte and polyelectrolyte chains. Polymers are modeled as bead-spring chains of charged Lennard-Jones particles each consisting of 32 monomers. Formation of a polyampholyte-polyelectrolyte complex is driven by polarization-induced attractive interactions. The complex is usually formed at the end of the polyelectrolyte with the polyampholyte chain elongated and aligned along the polyelectrolyte backbone. This complex structure between the polarized polyampholyte chain and the polyelectrolyte leads to maximization of the attractive and minimization of the repulsive electrostatic interactions. The size of a polyampholyte in a complex is usually larger than that of an isolated polyampholyte chain. We also observed that initially collapsed polyampholytes undergo a coil-globule transition by forming a complex. The structure of a polyampholyte-polyelectrolyte complex was analyzed by tail and loop distribution functions. We have found that the number of loops increases while their sizes decrease with the strength of the electrostatic interactions. Polyampholytes with random charge sequence form stronger complexes with polyelectrolytes than those with alternating charge sequence. Polyampholytes with long blocky sequences form a double helix with a polyelectrolyte at sufficiently large values of the Bjerrum length.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.

We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to...

متن کامل

Conformational transitions of a weak polyampholyte.

Using grand canonical Monte Carlo simulations of a flexible polyelectrolyte where the charges are in contact with a reservoir of constant chemical potential given by the solution pH, we study the behavior of weak polyelectrolytes in poor and good solvent conditions for polymer backbone. We address the titration behavior and conformational properties of a flexible diblock polyampholyte chain for...

متن کامل

Molecular dynamics simulations of polyelectrolyte-polyampholyte complexes. Effect of solvent quality and salt concentration.

Complexation between polyelectrolyte and polyampholyte chains in poor solvent conditions for the polyelectrolyte backbone has been studied by molecular dynamics simulations. In a poor solvent a polyelectrolyte forms a necklace-like structure consisting of polymeric globules (beads) connected by strings of monomers. The simulation results can be explained by assuming the existence of two differe...

متن کامل

The electrostatic persistence length calculated from Monte Carlo, variational and perturbation methods

Monte Carlo simulations and variational calculations using a Gaussian ansatz are applied to a model consisting of a flexible linear polyelectrolyte chain as well as to an intrinsically stiff chain with up to 1000 charged monomers. Addition of salt is treated implicitly through a screened Coulomb potential for the electrostatic interactions. For the flexible model the electrostatic persistence l...

متن کامل

Monte Carlo simulation and molecular theory of tethered polyelectrolytes.

We investigate the structure of end-tethered polyelectrolytes using Monte Carlo simulations and molecular theory. In the Monte Carlo calculations we explicitly take into account counterions and polymer configurations and calculate electrostatic interaction using Ewald summation. Rosenbluth biasing, distance biasing, and the use of a lattice are all used to speed up Monte Carlo calculation, enab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 67 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2003